Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479814

RESUMO

Entry into mitosis requires not only correct DNA replication but also extensive cell reorganization, including the separation of the Golgi ribbon into isolated stacks. To understand the significance of pre-mitotic Golgi reorganization, we devised a strategy to first block Golgi segregation, with the consequent G2-arrest, and then force entry into mitosis. We found that the cells forced to enter mitosis with an intact Golgi ribbon showed remarkable cell division defects, including spindle multipolarity and binucleation. The spindle defects were caused by reduced levels at the centrosome of the kinase Aurora-A, a pivotal spindle formation regulator controlled by Golgi segregation. Overexpression of Aurora-A rescued spindle formation, indicating a crucial role of the Golgi-dependent recruitment of Aurora-A at the centrosome. Thus, our results reveal that alterations of the pre-mitotic Golgi segregation in G2 have profound consequences on the fidelity of later mitotic processes and represent potential risk factors for cell transformation and cancer development.


Assuntos
Citocinese , Mitose , Complexo de Golgi , Centrossomo
2.
Methods Mol Biol ; 2557: 333-347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512225

RESUMO

The Golgi complex is the central hub of the secretory pathway. In mammalian cells, it is formed by stacks of flattened cisternae organized in a continuous membrane system, the Golgi ribbon, located near the centrosome. During G2, the Golgi ribbon is disassembled into isolated stacks that, at the onset of mitosis, are further fragmented into small tubular-vesicular clusters that disperse throughout the cytoplasm. Here, we describe a set of methods to study the Golgi complex in different phases of the cell cycle, drawing attention to reproducing the mitotic Golgi fragmentation to gain knowledge and acquire the skills to study the mechanisms that regulate mitotic Golgi reorganization as well as its biological significance. The investigations based on these assays have been instrumental in understanding that Golgi disassembly is not only a consequence of mitosis but is also required for mitotic entry and cell division.


Assuntos
Complexo de Golgi , Mitose , Animais , Complexo de Golgi/metabolismo , Ciclo Celular , Centrossomo , Mamíferos
3.
Front Cell Dev Biol ; 10: 925228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813197

RESUMO

The Golgi complex has a central role in the secretory traffic. In vertebrate cells it is generally organized in polarized stacks of cisternae that are laterally connected by membranous tubules, forming a structure known as Golgi ribbon. The steady state ribbon arrangement results from a dynamic equilibrium between formation and cleavage of the membrane tubules connecting the stacks. This balance is of great physiological relevance as the unlinking of the ribbon during G2 is required for mitotic entry. A block of this process induces a potent G2 arrest of the cell cycle, indicating that a mitotic "Golgi checkpoint" controls the correct pre-mitotic segregation of the Golgi ribbon. Then, after mitosis onset, the Golgi stacks undergo an extensive disassembly, which is necessary for proper spindle formation. Notably, several Golgi-associated proteins acquire new roles in spindle formation and mitotic progression during mitosis. Here we summarize the current knowledge about the basic principle of the Golgi architecture and its functional relationship with cell division to highlight crucial aspects that need to be addressed to help us understand the physiological significance of the ribbon and the pathological implications of alterations of this organization.

4.
J Biomed Inform ; 108: 103494, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32629044

RESUMO

Tele-rehabilitation can complement traditional rehabilitation therapies by providing valuable information that can help in the evaluation, monitoring, and treatment of patients. Many patient tele-monitoring systems that integrate wearable technology are emerging as an effective tool for the long-term surveillance of rehabilitation progression, enabling continuous sampling of patient real-time movement in a non-invasive way, without affecting the normal daily activity of the outpatient, who, therefore, will not need to make frequent clinic visits. One of the main challenges of tele-rehabilitation systems is to pay special attention to the diversity of dysfunctions in patients by offering devices with customized behaviours adaptable to the physical conditions of each patient at the different stages of the rehabilitation therapy. Long-term monitoring systems need an adaptation policy to autonomously reconfigure their behaviour according to vital signs read during the physical activity of the patient, the remaining battery level, or the required accuracy of collected data. However, it would alsobe desirable to adjust such adaptation policies over time, according to the patient's evolution. This work presents a wearable patient-monitoring system for tele-rehabilitation that is able to dynamically self-configure its internal behaviour to the current context of the outpatient according to a set of adaptation policies that optimize battery consumption, taking into account other QoS parameters at the same time. Our system is also able to self-adapt its internal adaptation policies as a patient's condition improves, while maintaining the system's efficiency. We illustrate our proposal with a real mHealth case study. The results of the experiments show that the system updates the adaptation policies, taking into account specific indicators of the disease. The validation results show that the evolution of the self-adaptation policies correlates with the progression of different patients.


Assuntos
Telemedicina , Telerreabilitação , Dispositivos Eletrônicos Vestíveis , Exercício Físico , Humanos , Políticas
5.
Biochem Soc Trans ; 48(1): 245-256, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32010930

RESUMO

The Golgi complex (GC) has an essential role in the processing and sorting of proteins and lipids. The GC of mammalian cells is composed of stacks of cisternae connected by membranous tubules to create a continuous network, the Golgi ribbon, whose maintenance requires several core and accessory proteins. Despite this complex structural organization, the Golgi apparatus is highly dynamic, and this property becomes particularly evident during mitosis, when the ribbon undergoes a multistep disassembly process that allows its correct partitioning and inheritance by the daughter cells. Importantly, alterations of the Golgi structure are associated with a variety of physiological and pathological conditions. Here, we review the core mechanisms and signaling pathways involved in both the maintenance and disassembly of the Golgi ribbon, and we also report on the signaling pathways that connect the disassembly of the Golgi ribbon to mitotic entry and progression.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Proteínas da Matriz do Complexo de Golgi/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Rede trans-Golgi/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Microtúbulos/metabolismo , Transporte Proteico
6.
Front Cell Dev Biol ; 7: 133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396510

RESUMO

The Golgi complex (GC), in addition to its well-known role in membrane traffic, is also actively involved in the regulation of mitotic entry and progression. In particular, during the G2 phase of the cell cycle, the Golgi ribbon is unlinked into isolated stacks. Importantly, this ribbon cleavage is required for G2/M transition, indicating that a "Golgi mitotic checkpoint" controls the correct segregation of this organelle. Then, during mitosis, the isolated Golgi stacks are disassembled, and this process is required for spindle formation. Moreover, recent evidence indicates that also proper mitotic segregation of other organelles, such as mitochondria, endosomes, and peroxisomes, is required for correct mitotic progression and/or spindle formation. Collectively, these observations imply that in addition to the control of chromosomes segregation, which is required to preserve the genetic information, the cells actively monitor the disassembly and redistribution of subcellular organelles in mitosis. Here, we provide an overview of the major structural reorganization of the GC and other organelles during G2/M transition and of their regulatory mechanisms, focusing on novel findings that have shed light on the basic processes that link organelle inheritance to mitotic progression and spindle formation, and discussing their implications for tissue homeostasis and diseases.

7.
Traffic ; 20(10): 785-802, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31336000

RESUMO

The mammalian Golgi apparatus is organized in the form of a ribbon-like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be "unlinked" into isolated stacks to allow progression into mitosis. Here we show that the Golgi-associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK-mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.


Assuntos
Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Divisão Celular , Fase G2 , Complexo de Golgi/química , Células HeLa , Humanos , MAP Quinase Quinase 4/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Tubulina (Proteína)/metabolismo
8.
Biol Cell ; 109(10): 364-374, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28799169

RESUMO

The Golgi apparatus plays essential roles in the processing and sorting of proteins and lipids, but it can also act as a signalling hub and a microtubule-nucleation centre. The Golgi complex (GC) of mammalian cells is composed of stacks connected by tubular bridges to form a continuous membranous system. In spite of this structural complexity, the GC is highly dynamic, and this feature becomes particularly evident during mitosis, when the GC undergoes a multi-step disassembly process that allows its correct partitioning and inheritance by daughter cells. Strikingly, different steps of Golgi disassembly control mitotic entry and progression, indicating that cells actively monitor Golgi integrity during cell division. Here, we summarise the basic mechanisms and the molecular players that are involved in Golgi disassembly, focussing in particular on recent studies that have revealed the fundamental signalling pathways that connect Golgi inheritance to mitotic entry and progression.


Assuntos
Divisão Celular , Complexo de Golgi/metabolismo , Animais , Ciclo Celular , Humanos , Mitose , Fuso Acromático/metabolismo
9.
Tissue Cell ; 49(2 Pt A): 133-140, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27894594

RESUMO

The Golgi apparatus is a central organelle of the secretory pathway involved in the post-translational modification and sorting of lipids and proteins. In mammalian cells, the Golgi apparatus is composed of stacks of cisternae organized in polarized manner, which are interconnected by membrane tubules to constitute the Golgi ribbon, located in the proximity of the centrosome. Besides the processing and transport of cargo, the Golgi complex is actively involved in the regulation of mitotic entry, cytoskeleton organization and dynamics, calcium homeostasis, and apoptosis, representing a signalling platform for the control of several cellular functions, including signalling initiated by receptors located at the plasma membrane. Alterations of the conventional Golgi organization are associated to many disorders, such as cancer or different neurodegenerative diseases. In this review, we examine the functional implications of modifications of Golgi structure in neurodegenerative disorders, with a focus on the role of Golgi fragmentation in the development of Alzheimer's disease. The comprehension of the mechanism that induces Golgi fragmentation and of its downstream effects on neuronal function have the potential to contribute to the development of more effective therapies to treat or prevent some of these disorders.


Assuntos
Doença de Alzheimer/genética , Complexo de Golgi/genética , Transporte Proteico/genética , Doença de Alzheimer/patologia , Apoptose/genética , Sinalização do Cálcio/genética , Membrana Celular/genética , Membrana Celular/ultraestrutura , Complexo de Golgi/patologia , Complexo de Golgi/ultraestrutura , Humanos , Neurônios/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional/genética
10.
Methods Mol Biol ; 1496: 173-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27632010

RESUMO

The Golgi complex of mammalian cells is composed of stacks of flattened cisternae that are connected by tubules to form a continuous membrane system, also known as the Golgi ribbon. At the onset of mitosis, the Golgi ribbon is progressively fragmented into small tubular-vesicular clusters and it is reconstituted before completion of cytokinesis. The investigation of the mechanisms behind this reversible cycle of disassembly and reassembly has led to the identification of structural Golgi proteins and regulators. Moreover, these studies allowed to discover that disassembly of the ribbon is necessary for cell entry into mitosis. Here, we describe an in vitro assay that reproduces the mitotic Golgi fragmentation and that has been successfully employed to identify many important mechanisms and proteins involved in the mitotic Golgi reorganization.


Assuntos
Fase G2/fisiologia , Complexo de Golgi/metabolismo , Mitose/fisiologia , Animais , Células HeLa , Humanos , Ratos
11.
Sensors (Basel) ; 15(7): 15640-60, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26140350

RESUMO

One of the most important challenges of this decade is the Internet of Things (IoT), which aims to enable things to be connected anytime, anyplace, with anything and anyone, ideally using any path/network and any service. IoT systems are usually composed of heterogeneous and interconnected lightweight devices that support applications that are subject to change in their external environment and in the functioning of these devices. The management of the variability of these changes, autonomously, is a challenge in the development of these systems. Agents are a good option for developing self-managed IoT systems due to their distributed nature, context-awareness and self-adaptation. Our goal is to enhance the development of IoT applications using agents and software product lines (SPL). Specifically, we propose to use Self-StarMASMAS, multi-agent system) agents and to define an SPL process using the Common Variability Language. In this contribution, we propose an SPL process for Self-StarMAS, paying particular attention to agents embedded in sensor motes.

12.
PLoS One ; 10(5): e0127614, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996923

RESUMO

Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.


Assuntos
ADP Ribose Transferases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Neisseria meningitidis/metabolismo , Actinas/metabolismo , Animais , Apoptose , Endocitose , Células Epiteliais/patologia , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Camundongos , Ligação Proteica , Transporte Proteico
13.
J Cell Sci ; 128(12): 2249-60, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25948586

RESUMO

In mammalian cells, the Golgi complex is composed of stacks that are connected by membranous tubules. During G2, the Golgi complex is disassembled into isolated stacks. This process is required for entry into mitosis, indicating that the correct inheritance of the organelle is monitored by a 'Golgi mitotic checkpoint'. However, the regulation and the molecular mechanisms underlying this Golgi disassembly are still poorly understood. Here, we show that JNK2 has a crucial role in the G2-specific separation of the Golgi stacks through phosphorylation of Ser277 of the Golgi-stacking protein GRASP65 (also known as GORASP1). Inhibition of JNK2 by RNA interference or by treatment with three unrelated JNK inhibitors causes a potent and persistent cell cycle block in G2. JNK activity becomes dispensable for mitotic entry if the Golgi complex is disassembled by brefeldin A treatment or by GRASP65 depletion. Finally, measurement of the Golgi fluorescence recovery after photobleaching demonstrates that JNK is required for the cleavage of the tubules connecting Golgi stacks. Our findings reveal that a JNK2-GRASP65 signalling axis has a crucial role in coupling Golgi inheritance and G2/M transition.


Assuntos
Divisão Celular/fisiologia , Fase G2/fisiologia , Complexo de Golgi/patologia , Rim/metabolismo , Proteínas de Membrana/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi , Células HeLa , Humanos , Rim/citologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mitose/fisiologia , Fosforilação , RNA Interferente Pequeno/genética , Ratos
14.
Sensors (Basel) ; 15(3): 5251-80, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25746093

RESUMO

Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs).We evaluate our approach using a case study from the intelligent transportation system domain.

15.
Sensors (Basel) ; 14(11): 21213-46, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25390409

RESUMO

Currently, museums provide their visitors with interactive tour guide applications that can be installed in mobile devices and provide timely tailor-made multimedia information about exhibits on display. In this paper, we argue that mobile devices not only could provide help to visitors, but also to museum staff. Our goal is to integrate, within the same system, multimedia tour guides with the management facilities required by museums. In this paper, we present iMuseumA (intelligent museum with agents), a mobile-based solution to customize visits and perform context-aware management tasks. iMuseumA follows an agent-based approach, which makes it possible to interact easily with the museum environment and make decisions based on its current status. This system is currently deployed in the Museum of Informatics at the Informatics School of the University of Málaga, and its main contributions are: (i) a mobile application that provides management facilities to museum staff by means of sensing and processing environmental data; (ii) providing an integrated solution for visitors, tour guides and museum staff that allows coordination and communication enrichment among different groups of users; (iii) using and benefiting from group communication for heterogeneous groups of users that can be created on demand.

16.
Metas enferm ; 13(7): 56-59, sept. 2010. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-85712

RESUMO

Desde el Ministerio de Sanidad y Consumo, a través de laAgencia Española de Seguridad Alimentaria y Nutrición(AESAN), en el año 2005 se inició la denominada EstrategiaNAOS (Nutrición, Actividad Física y Prevención de la Obesidad),a fin de sensibilizar a la población del problema que la obesidadrepresenta para la salud y de impulsar todas aquellas iniciativasque contribuyeran a lograr que, especialmente, losniños y los jóvenes, adoptaran hábitos de vida saludables a travésde una alimentación sana y de la práctica regular de actividadfísica. A partir de dicho objetivo, en el American Schoolof Valencia (ASV), un centro educativo pionero por contardentro de su plantilla con una enfermera desde hace más de12 años, nos propusimos impulsar el desarrollo de hábitossaludables trabajando conjuntamente con el profesorado,con el propósito de prevenir problemas en la adolescencia oen la edad adulta. La experiencia que se muestra en este artículoconsistió en impulsar el denominado “Programa delDía de la Fruta”, cuyo objetivo es estimular el consumo de frutadurante el almuerzo (AU)


The Ministry of Health and Consumer Affairs, by means ofthe Spanish Agency of Food Safety and Nutrition (AESAN),promoted the implementation of the so-called NAOS Strategy(Strategy for Nutrition, Physical Activity and Obesity Prevention),with the aims of raising the population’s awarenesson how obesity negatively affects health and promotingany initiative that contributed to children and young peopleadopting healthy lifestyle habits by following a healthy dietand exercising regularly. Based on this objective, we decidedto advocate the development of healthy habits by workingside by side with teachers at the American School of Valencia(ASV), an educational centre that is considered a pioneerfor having a nurse on staff for over 12 years, with thepurpose of preventing problems in adolescence or adulthood.The experience shown in this article consisted of implementingthe so-called “Fruit Day Programme”, which aimsto stimulate fruit consumption during breakfast (AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Alimentos Integrais , Obesidade/prevenção & controle , Sobrepeso/prevenção & controle , Cuidados de Enfermagem/métodos , Estilo de Vida Saudável , Promoção da Saúde/métodos , Alimentação Escolar , Serviços de Saúde Escolar
17.
Int Rev Cell Mol Biol ; 275: 1-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19491051

RESUMO

The controlled degradation of the extracellular matrix is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the extracellular matrix via specialized plasma membrane protrusions termed invadopodia. Considerable progress has been made in recent years toward understanding the basic molecular components and their ultrastructural features; generating substantial interest in invadopodia as a paradigm to study the complex interactions between the intracellular trafficking, signal transduction, and cytoskeleton regulation machineries. The next level will be to understand whether they may also represent valid biological targets to help advance the anticancer drug discovery process. Current knowledge will be reviewed here together with some of the most important open questions in invadopodia biology.


Assuntos
Extensões da Superfície Celular/fisiologia , Biologia Molecular , Animais , Comunicação Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Matriz Extracelular/fisiologia , Humanos , Células Tumorais Cultivadas
18.
Cancer Metastasis Rev ; 28(1-2): 137-49, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19153671

RESUMO

Invasive tumor-derived or transformed cells, cultured on a flat extracellular matrix substratum, extend specialized proteolytically active plasma membrane protrusions. These structures, termed invadopodia, are responsible for the focal degradation of the underlying substrate. Considerable progress has been made in recent years towards understanding the basic molecular components and regulatory circuits and the ultrastructural features of invadopodia. This has generated substantial interest in invadopodia as a paradigm to study the complex interactions between the intracellular trafficking, signal transduction and cytoskeleton regulation machineries; hopes are high that they may also represent valid biological targets to help advance the anti-cancer drug discovery process. Current knowledge will be reviewed here with an emphasis on the many open questions in invadopodia biology.


Assuntos
Antineoplásicos/farmacologia , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Descoberta de Drogas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Biológicos , Invasividade Neoplásica , Transdução de Sinais
19.
Cancer Res ; 69(3): 747-52, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19141649

RESUMO

Invadopodia are proteolytically active membrane protrusions that extend from the ventral surface of invasive tumoral cells grown on an extracellular matrix (ECM). The core machinery controlling invadopodia biogenesis is regulated by the Rho GTPase Cdc42. To understand the upstream events regulating invadopodia biogenesis, we investigated the role of Fgd1, a Cdc42-specific guanine nucleotide exchange factor. Loss of Fgd1 causes the rare inherited human developmental disease faciogenital dysplasia. Here, we show that Fgd1 is required for invadopodia biogenesis and ECM degradation in an invasive cell model and functions by modulation of Cdc42 activation. We also find that Fgd1 is expressed in human prostate and breast cancer as opposed to normal tissue and that expression levels matched tumor aggressiveness. Our findings suggest a central role for Fgd1 in the focal degradation of the ECM in vitro and, for the first time, show a connection between Fgd1 and cancer progression, proposing that it might function during tumorigenesis.


Assuntos
Neoplasias da Mama/patologia , Extensões da Superfície Celular/metabolismo , Matriz Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Extensões da Superfície Celular/patologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Regulação para Cima , Proteína cdc42 de Ligação ao GTP/metabolismo
20.
J Cell Mol Med ; 13(8B): 1728-1740, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19175685

RESUMO

Invadopodia are proteolytically active protrusions formed by invasive tumoural cells when grown on an extracellular matrix (ECM) substratum. Clearly, invadopodia are specialized membrane domains acting as sites of signal transduction and polarized delivery of components required for focalized ECM degradation. For these reasons, invadopodia are a model to study focal ECM degradation by tumour cells. We investigated the features of invadopodia membrane domains and how altering their composition would affect invadopodia biogenesis and function. This was achieved through multiple approaches including manipulation of the levels of cholesterol and other lipids at the plasma membrane, alteration of cholesterol trafficking by acting on caveolin 1 expression and phosphorylation. We show that cholesterol depletion impairs invadopodia formation and persistence, and that invadopodia themselves are cholesterol-rich membranes. Furthermore, the inhibition of invadopodia formation and ECM degradation after caveolin 1 knock-down was efficiently reverted by simple provision of cholesterol. In addition, the inhibitory effect of caveolin 3(DGV) expression, a mutant known to block cholesterol transport to the plasma membrane, was similarly reverted by provision of cholesterol. We suggest that invadopodia biogenesis, function and structural integrity rely on appropriate levels of plasma membrane cholesterol, and that invadopodia display the properties of cholesterol-rich membranes. Also, caveolin 1 exerts its function in invadopodia formation by regulating cholesterol balance at the plasma membrane. These findings support the connection between cholesterol, cancer and caveolin 1, provide further understanding of the role of cholesterol in cancer progression and suggest a mechanistic framework for the proposed anti-cancer activity of statins, tightly related to their blood cholesterol-lowering properties.


Assuntos
Caveolinas/fisiologia , Colesterol/metabolismo , Lipídeos de Membrana/metabolismo , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Melanoma/patologia , Invasividade Neoplásica , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...